FISICA

LAUREA TRIENNALE

GEOMETRIA

Docenti: 
BILIOTTI Leonardo
Crediti: 
6
Sede: 
PARMA
Anno accademico di offerta: 
2021/2022
Responsabile della didattica: 
Settore scientifico disciplinare: 
GEOMETRIA (MAT/03)
Semestre dell'insegnamento: 
Primo Semestre
Anno di corso: 
1
Lingua di insegnamento: 

Italiano

Obiettivi formativi

Il corso intende fornire conoscenze e tecniche di base di algebra lineare allo scopo di fornire strumenti per la risoluzione di sistemi lineari, per diagonalizzare matrici e per descrivere in modo semplice il comportamento di enti geometrici nel piano e nello spazio mediante lezione frontali.Capacità di applicare conoscenza e comprensioneLo studente saprà: i) risolvere sistemi di equazioni lineari; ii) semplici esercizi di geometria analitica nello spazio; operare su vettori e matrici; iii) diagonalizzare operatori e matrici.Autonomia di giudizio: Lo studente dovra' essere in grado di valutare la coerenza e correttezza dei risultati ottenuti da lui o da altri.Capacita' comunicative.Le lezioni frontali e il confronto diretto con il docente favoriranno l'acquisizione da parte dello studente di un lessico scientifico specifico e appropriato. Ci si attende che, alla fine del corso, sia in grado di comunicare in modo chiaro e preciso contenuti matematici.Capacità di apprendimento:Lo studente dopo aver seguito il corso sarà in grado di approfondire autonomamente le proprie conoscenze nell'ambito del algebra lineare e la teoria degli spazi vettoriali.

Conoscenza e capacità di comprensione
Lo studente apprenderà le nozioni e le tecniche di base dell'algebra lineare e della geometria Euclidea mediante le lezioni frontali tenute durante il corso.

Capacità di applicare conoscenza e comprensione
Lo studente saprà: i) risolvere sistemi di equazioni lineari; ii) semplici esercizi di geometria analitica nello spazio; operare su vettori e matrici; iii) diagonalizzare operatori e matrici.Autonomia di giudizio: Lo studente dovra' essere in grado di valutare la coerenza e correttezza dei risultati ottenuti da lui o da altri.Capacita' comunicative.Le lezioni frontali e il confronto diretto con il docente favoriranno l'acquisizione da parte dello studente di un lessico scientifico specifico e appropriato. Ci si attende che, alla fine del corso, sia in grado di comunicare in modo chiaro e preciso contenuti matematici.Capacità di apprendimento:Lo studente dopo aver seguito il corso sarà in grado di approfondire autonomamente le proprie conoscenze nell'ambito del algebra lineare e la teoria degli spazi vettoriali.

Contenuti dell'insegnamento

Cenno sui numeri complessi. Calcolo vettoriale e matriciale. Determinante e rango di una matrice. Sistemi lineari. Spazi vettoriali reali (complessi). Somma e somma diretta di sottospazi. Applicazioni lineari e matrci associate. Autovalori e autovettori. Diagonalizzabilità di una matrice. Forme bilineari e prodotti scalari. Endomorfismi simmetrici ed isometrie. Teorema spettrale reale. Geometria analitica nel piano e nello spazio euclideo.

Il corso è una introduzione alle nozioni di base dell'algebra lineare e della geometria. La prima parte studia la geometria euclidea nello spazio (vettori, rette, piani), mentre la seconda parte è rivolta allo studio di matrici e sistemi lineari. Nella terza parte si studiano gli spazi vettoriali, le applicazioni lineari e il problema della diagonalizzazione degli operatori e delle matrici. Il corso termina con la trattazione dei prodotti scalari ed Hermitiani.

Programma esteso

Geometria euclidea e prodotto vettoriale. Elementi di geometria analitica dello spazio. Equazioni parametriche e cartesiane di una retta. Posizione reciproca di due rette; rette sghembe. Equazione di un piano. Prodotto scalare canonico e distanza. Prodotto vettore e sue proprietà fondamentali. Spazi vettoriali reali e complessi. Sottospazi vettoriali: somma e intersezione. Combinazione lineare di vettori: dipendenza/indipendenza lineare. Generatori, basi e dimensione di uno spazio vettoriale. Formula di Grassmann. Determinanti: definizione tramite le formule di Laplace e proprietà fondamentali. Teorema di Binet.Operazioni elementari di riga e colonna su matrici. Calcolo della matrice inversa. Rango di una matrice. Sistemi lineari. Metodo di Gauss-Jordan e teorema di Rouché Capelli. Applicazioni lineari. Definizione di nucleo e di immagine; teorema fondamentale sulle applicazioni lineari. Matrice associata ad una applicazione lineare e regola di cambiamento di base. Isomorfismi e applicazioni inverse. Endomorfismi di uno spazio vettoriale: autovalori, autovettori e autospazi. Polinomio caratteristico. Molteplicità algebrica e geometrica di un autovalore. Endomorfismi diagonalizzabili.Prodotti scalari. Complemento ortogonale di un sottospazio. Processo di ortogonalizzazione di Gram-Schmidt. Rappresentazione di isometrie tramite matrici ortogonali. Il gruppo ortogonale. Diagonalizzazione di matrici simmetriche: teorema spettrale.

Geometria euclida e prodotto vettoriale. Elementi di geometria analitica dello spazio. Equazioni parametriche e cartesiane di una retta. Posizione reciproca di due rette; rette sghembe. Equazione di un piano. Prodotto scalare canonico e distanza. Prodotto vettore e sue proprietà fondamentali. Spazi vettoriali reali e complessi. Sottospazi vettoriali: somma e intersezione. Combinazione lineare di vettori: dipendenza/indipendenza lineare. Generatori, basi e dimensione di uno spazio vettoriale. Formula di Grassmann. Determinanti: definizione tramite le formule di Laplace e proprietà fondamentali. Teorema di Binet.
Operazioni elementari di riga e colonna su matrici. Calcolo della matrice inversa. Rango di una matrice. Sistemi lineari. Metodo di Gauss-Jordan e teorema di Rouché Capelli. Applicazioni lineari. Definizione di nucleo e di immagine; teorema fondamentale sulle applicazioni lineari. Matrice associata ad una applicazione lineare e regola di cambiamento di base. Isomorfismi e applicazioni inverse. Endomorfismi di uno spazio vettoriale: autovalori, autovettori e autospazi. Polinomio caratteristico. Molteplicità algebrica e geometrica di un autovalore. Endomorfismi diagonalizzabili.
Prodotti scalari. Complemento ortogonale di un sottospazio. Processo di ortogonalizzazione di Gram-Schmidt. Rappresentazione di isometrie tramite matrici ortogonali. Il gruppo ortogonale. Diagonalizzazione di matrici simmetriche: teorema spettrale. Criterio di positività per prodotti
scalari. Cenni al caso complesso.

Bibliografia

Marco Abate, Chiara De Fabritiis “Geometria analitica con elementi di algebra lineare", Francesco Capocasa e Costantino Medori ‘’Corso di Geometria e Algebra Lineare’’

M. Abate, C. De Fabritiis, Geometria analitica con elementi di algebra lineare, 2a ed., Mc Graw-Hill, 2010.

Metodi didattici

La modalità didattica privilegiata è la lezione frontale in cui vengono proposti gli argomenti dal punto di vista formale corredati da esempi significativi, da applicazioni e da esercizi. Sono proposti esercizi da svolgere in maniera autonoma, in modo da incoraggiare gli studenti ad esplorare i limiti delle loro capacità. Il materiale è caricato sulla piattaforma Elly con una cadenza settimanale. Anche le lezioni sonlo caricate sulla piattaforma Elly con cadenza settimanale.

A causa del coronavirus tutte le attività descritte saranno, almeno nella fase iniziale, svolte su teams e elly.

Durante le lezioni frontali verranno proposti gli argomenti del corso dal punto di vista formale, corredati da esempi significativi e applicazioni, e numerosi esercizi. Gli esercizi sono uno strumento essenziale in algebra lineare e geometria; per questo, in aggiunta alle lezioni, saranno proposti esercizi da svolgere in modo guidato nell’ambito del Progetto IDEA.

Modalità verifica apprendimento

La verifica dell'apprendimento avviene attraverso una prova scritta e attraverso un colloquio orale. Nella prova scritta, attraverso gli esercizi proposti, lo studente dovrà dimostrare di possedere le conoscenze di base di algebra lineare e di geometria analitica. Nel colloquio orale lo studente dovrà essere in grado di condurre autonomamente dimostrazioni relative alle tematiche del corso utilizzando un appropriato linguaggio ed un formalismo matematico corretto. Per svolgere la prova scritta e orale gli studenti dovranno iscriversi sulla piattaforma esse3. La durata della prova scritta è di 1:45. Gli studenti che raggiungeranno nella prova scritta d’esame una valutazione uguale o superiore a 18/30 potranno sostenere la prova orale. Il voto finale risulterà dalla media aritmetica dei voti della prova scritta d’esame e della prova orale d’esame. 

Se a causa del coronavirus non si potesse fare esami in presenza, gli esami saranno svolti su elly e la prova sarà un quiz a scelta multipla.

La verifica dell'apprendimento prevede un esame finale comprendente un test preliminare a risposta multipla, un elaborato scritto e un colloquio orale. Potrebbero essere previste due prove intermedie durante il corso, che valgono ai fini del superamento della prova scritta e test finali. Nella prova scritta, attraverso i test e gli esercizi proposti, lo studente dovra'
dimostrare di possedere le conoscenze di base dell'algebra lineare e della geometria. Nel colloquio orale lo studente dovrà essere in grado di enunciare e dimostrare i risultati presentati durante le lezioni, utilizzando un linguaggio appropriato ed un formalismo matematico corretto